- 1. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Prove that if $\mu(X) < \infty$ and if $1 \le p < q < \infty$, then $L^q(\mu) \subseteq L^p(\mu)$.
 - (b) Is the statement in (a) true if $\mu(X) = \infty$? If yes, prove it. If no, give a counterexample.
- 2. Let μ and ν be finite measures on a measurable space (X, \mathcal{M}) and suppose that

$$\nu(E) = \int_E f \, d\mu$$

for every $E \in \mathcal{M}$, where f is some function in $L^1(\mu)$. Prove that

$$\int_X g \, d\nu = \int_X g f \, d\mu$$

for all $g \in L^1(\nu)$.

- 3. (a) What is a simple function? What is an integrable function? How is $\int_X f d\mu$ defined? Define it first for a simple function, then for a nonnegative measurable function, and then finally for an integrable function.
 - (b) Prove that $\int_E f d\mu = 0$ if $\mu(E) = 0$ and f is measurable.
 - (c) What is the connection between f being integrable and |f| being integrable? Prove it. Also, find a function $f : [a, b] \to \mathbb{R}$ for which |f| is integrable, but f is not Borel measurable.
 - (d) State and prove the vanishing principle.
- 4. (a) What is an \mathcal{A} -measurable function $f: X \to [-\infty, +\infty]$? Mention some equivalent conditions.
 - (b) What is a Borel measurable function?
 - (c) Show how to construct a set which is Lebesgue measurable, but which is not a Borel set.
 - (d) Prove that if $f : \mathbb{R} \to \mathbb{R}$ is increasing, then f is Borel measurable.
- 5. Let $\phi \in C_0^{\infty}(\mathbb{R})$ be such that ϕ is even, $\|\phi\|_{L^1} = 1$, $\phi(x) \ge 0$, and $\phi(x) = 0$ for |x| > 1. Define $\phi_t(x) = t^{-1}\phi(x/t)$.
 - (a) Prove that if $f \in C_0(\mathbb{R})$, then $f * \phi_t \to f$ as $t \to 0$ pointwise on \mathbb{R} and that $f * \phi_t \to f$ as $t \to 0$ in the L^p norm for each $1 \le p < \infty$.
 - (b) Use part (a) to show that the same result extends to the case where $f \in L^p(\mathbb{R})$. That is, if $f \in L^p(\mathbb{R}), 1 \le p < \infty$, then $f * \phi_t \to f$ as $t \to 0$ in the L^p norm.
- 6. Suppose that a series $\sum_{n=1}^{\infty} f_n$ converges absolutely in $L^1(\mathbb{R})$, i.e., $\sum_{n=1}^{\infty} \|f_n\|_{L^1} < \infty$. Prove that:
 - (a) the series $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges for a.e. $x \in \mathbb{R}$;
 - (b) $f \in L^1(\mathbb{R});$
 - (c) $\int_{\mathbb{R}} \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int_{\mathbb{R}} f_n.$
- 7. Do the following three parts.
 - (a) Give precise statements (e.g., as stated in class or in Folland's book) of Tonelli's theorem and Fubini's theorem for general measure spaces.
 - (b) Let λ denote Lebesgue measure on \mathbb{R} , and let $\lambda^2 := \lambda \times \lambda$ denote the product measure on \mathbb{R}^2 . Prove that if $f, g \in L^1(\mathbb{R})$, then

$$\int_{\mathbb{R}^2} f(x)g(t-x) \, d\lambda^2(x,t) = \int_{\mathbb{R}^2} g(x)f(t-x) \, d\lambda^2(x,t).$$

Justify any steps in your proof, and if you use any theorems explain why the hypotheses of those theorems are satisfied.

(c) Let $I^2 := [0,1] \times [0,1]$. Prove that the function $f: I^2 \to \mathbb{R}$ defined by

$$f(x,y) := \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is not integrable. (Hint: It may help to realize that $\frac{\partial}{\partial x}\left(\frac{-x}{x^2+y^2}\right) = f(x,y).$)

8. Prove that

$$\lim_{n \to \infty} \int_0^\infty \frac{x^n \cos(x/n)}{(1+x^n)e^x} \, dx$$

exists and compute it.

- 9. (On translation) For a real-valued function f on \mathbb{R} , define the translate f^t by $f^t(x) = f(x-t)$.
 - (a) Suppose f is continuous on \mathbb{R} and has compact support. Prove that $||f^t f||_{L^{\infty}(\mathbb{R})} \to 0$ as $t \to 0$.
 - (b) Show that if $f \in L^1(\mathbb{R})$, then $||f^t f||_{L^1(\mathbb{R})} \to 0$ as $t \to 0$.
- 10. (a) State Lebesgue's dominated convergence theorem.
 - (b) Let μ be counting measure on \mathbb{N} . We can identify a function $f : \mathbb{N} \to \mathbb{R}$ with a sequence $(a_n)_{n \in \mathbb{N}}$. Prove that if f is integrable then $\sum_{k=1}^{\infty} |a_k|$ converges in the sense of Calculus 2, and the sum equals $\int_{\mathbb{N}} |f| d\mu$. Show also that in this case $\int_X f d\mu = \sum_{k=1}^{\infty} a_k$.
 - (c) Show that a Riemann integrable function $f : [a, b] \to \mathbb{R}$ is Lebesgue integrable, and that the two integrals of f coincide.
 - (d) Complete the sentence: a bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable if and only if $f \dots$
- 11. (a) State LDCT.
 - (b) What is a 'Banach space'?
 - (c) For a measure space (X, μ) , show that the simple functions are dense in $L^1(X, \mu)$.
 - (d) Show that $L^{\infty}([0,1])$ is not separable.
- 12. Prove the following statements or disprove by providing a counterexample:
 - (a) If a set $E \subset \mathbb{R}^n$ has nonempty interior, then $\lambda^*(E) > 0$. (Note: λ^* is the outer measure.)
 - (b) If a set $E \subset \mathbb{R}^n$ is such that $\lambda^*(E) > 0$, then E has nonempty interior.
 - (c) Every continuous function $f : \mathbb{R} \to \mathbb{R}$ is measurable.
 - (d) If $f : \mathbb{R} \to \mathbb{R}$ is continuous at all but one point, then there exists a continuous function g such that f = g a.e.
 - (e) If $A \subset \mathbb{R}$ is an uncountable Lebesgue-measurable set, the its Lebesgue measure is larger than 0.
 - (f) If $\{f_k\}$ is a sequence of non-negative and measurable functions on [0, 1] such that $f_k \to 0$ a.e., then $\int_{[0,1]} f_k \to 0$.
 - (g) If $\{f_k\}$ is a sequence of non-negative and measurable functions on [0, 1] such that $f_k \leq M$ for all k and $f_k \to 0$ a.e., then $\int_{[0,1]} f_k \to 0$.
 - (h) If $\{f_k\}$ is a sequence of non-negative and measurable functions on [0, 1] such that $f_k \to 0$ in measure, then $f_k \to 0$ a.e.
- 13. Let $1 \leq p < \infty$ and suppose that $f_n, f \in L^p(\mathbb{R}^n)$ satisfy $f_n \to f$ a.e. Prove that

$$||f_n - f||_{L^p} \to 0 \iff ||f_n||_{L^p} \to ||f||_{L^p}.$$

14. Let \mathcal{M} be the collection of all subsets E of \mathbb{R} such that either E or its complement is at most countable. Prove that \mathcal{M} is a σ -algebra. 15. Let $f \in L^1((0,1))$. Define g on (0,1) by

$$g(x) = \int_x^1 \frac{f(t)}{t} \, dt.$$

Prove that $g \in L^1((0,1))$.

- 16. (Absolute continuity)
 - (a) A function $f:[0,1] \to \mathbb{R}$ is said to be *Lipschitz* if there exists L > 0 such that $|f(x) f(y)| \le L|x-y|$ for all $x, y \in [0,1]$. Prove that if $f:[0,1] \to \mathbb{R}$ is Lipschitz, then f is absolutely continuous.
 - (b) Suppose $f : [0,1] \to \mathbb{R}$ is continuous on [0,1] and absolutely continuous on $[\varepsilon,1]$ for every $\varepsilon \in (0,1)$. Show that f need not be absolutely continuous on [0,1] by giving a counterexample. Hint: Consider functions of the form $x^{\alpha} \cos(1/x^{b})$.
- 17. Let λ denote Lebesgue measure on [0, 1]. Show that the function $f: [0, 1] \to \mathbb{R}$ defined by

$$f(x) = \sum_{k=1}^{\infty} \frac{\cos(2\pi kx) + x^k}{k^2}$$

is an integrable function and that

$$\int_0^1 f(x)\,d\lambda(x) = \sum_{k=1}^\infty \frac{1}{(k+1)k^2}$$

- 18. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence in $L^1([0,1])$ with $||f_n||_1 \leq K$ for each $n \in \mathbb{N}$. Prove that if $g: [0,1] \to \mathbb{C}$ and $f_n \to g$ almost everywhere, then $g \in L^1([0,1])$ and $||g||_1 \leq K$.
- 19. (a) What is Lebesgue outer measure λ^* on \mathbb{R}^n ? What does it mean for a subset A of \mathbb{R}^n to be Lebesgue measurable?
 - (b) Spell out all the relationships between the Lebesgue σ -algebra and the Borel σ -algebra. You don't need to prove anything.
 - (c) Explain the Caratheodory construction/theorem.
 - (d) What does it mean to say Lebesgue measure is a complete measure? Explain briefly how we know that Lebesgue measure is complete.
 - (e) Show that there exists a Lebesgue measurable subset of ℝ which is not a Borel set. (You don't need to prove anything about the ternary function, just use it.)
- 20. (a) Let h and g be integrable functions on X and Y respectively, and let f(x, y) = h(x)g(y). Show that f is integrable and $\int f d(\mu \times \nu) = (\int_X h d\mu)(\int_Y g d\nu)$. State and prove the corresponding theorem if h, g are measurable and nonnegative.
 - (b) Discuss some of the various types of convergence $f_n \to f$, and how they are related. You don't need to prove anything, but you might give some examples.
 - (c) Define the convolution f * g of two functions in $L^1(\mathbb{R})$. Show that the function inside the integral in the definition of f * g is measurable. Show also that f * g = g * f.
 - (d) Show that the Fourier transform of f * g is a product of the Fourier transform of f and the Fourier transform of g.
- 21. (a) What is a complex measure ν on (X, \mathcal{A}) ? (If you never met complex measures, you may switch them with finite signed measures here and in questions below.)
 - (b) Define the variation $|\nu|$. Also, complete the sentence: "The variation $|\nu|$ is the smallest positive measure such that" Define $||\nu||$.

- (c) Prove that $|\nu + \sigma| \le |\nu| + |\sigma|$ and $|c\nu| = |c||\nu|$ for complex measures ν, σ on (X, \mathcal{A}) , and deduce that the space M(X) of such complex measures is a normed space.
- (d) Prove that $L^2(X, \mu)$ is a Hilbert space.
- 22. (a) Consider a compact Hausdorff space K, and let C(K) be the continuous scalar functions on K. Define the supremum norm on C(K), show that it is a norm, and that with this norm C(K) is a normed space. If you are lost, do this in the case K = [0, 1].
 - (b) With notation in (a), explain carefully the relationship between the measures on K and linear functionals on C(K). Consider two cases, the positive (or nonnegative) case and the general case.
 - (c) What can you say about a surjective linear continuous one-to-one function between Banach spaces? Also state the principle of uniform boundedness.
 - (d) Define the terms "dense" and "separable." Give a simple test for when a normed space is not separable, and using this show that $L^{\infty}([0,1])$ is not separable.
- 23. (a) Define $L^p(X,\mu)$ for $1 \le p \le \infty$.
 - (b) Prove in full detail that $L^1(X,\mu)$ is a normed space and a Banach space.
 - (c) Prove that $L^2(X,\mu)$ is a Hilbert space giving all the details. You can assume that it is a Banach space.
 - (d) If $g \in L^1(X, \mu)$, with $g \ge 0$, and $\nu(E) = \int_E g \, d\mu$, show that ν is a measure, and that $\int_X f \, d\nu = \int_X fg \, d\mu$ if either f is measurable and $f \ge 0$ or $f \in L^\infty(X, \mu)$.
 - (e) Complete: The 'density' of a finite measure on \mathbb{R}^n equals ______ derivative a.e. That is, for a.e. \vec{x} , if measurable sets E_n 'shrink nicely to' \vec{x} , then $\lim_{k\to\infty} \frac{\nu(E_k)}{\lambda(E_k)} =$ _____.
- 24. (a) Show that if f is a continuous scalar valued function on [a, b], and if f = 0 a.e., then f = 0 everywhere.
 - (b) What is the connection between the Riemann and the Lebesgue integral?
 - (c) Show that the Lebesgue integral is translation invariant.
 - (d) Show that for $f, g: [a, b] \to \mathbb{R}$, if f = g a.e., and g is continuous, then it does not necessarily follow that f is continuous a.e.
- 25. (a) What does it mean that measurable sets E_n 'shrink nicely' to x?
 - (b) Complete the sentence: "If $f \in L^1(\mathbb{R}^k)$ and if x is a Lebesgue point of f and E_n shrink nicely to x, then"
 - (c) State and prove the 'first fundamental theorem of calculus' involving NAC.
 - (d) Prove that a function on \mathbb{R} is Lipschitz iff it is in AC and its derivative is in L^{∞} .
- 26. (a) For 1 set <math>q = p', and define a map $\Phi : L^q(X, \mu) \to (L^p(X, \mu))^*$, showing that it is a well-defined linear isometry. State a theorem from class about when Φ is also surjective.
 - (b) Define the terms: AC (absolute continuity), NBV.
 - (c) Explain the fundamental correspondence between measures on \mathbb{R} and NBV, and between $L^1(\mathbb{R})$ and AC.
 - (d) Show that every $f \in AC[a, b]$ is of bounded variation.
- 27. Let $E \subset \mathbb{R}^n$ be a measurable set and f an integrable function on E.
 - (a) Set $E_m = \{|f| < m\}$ and show that $f\chi_{E_m} \to f$ in L^1 -norm as $m \to \infty$.
 - (b) Given $\epsilon > 0$, show that there exists a constant $\delta > 0$ such that for every measurable set $A \subset E$, we have

$$\lambda(A) < \epsilon \implies \int_A |f| < \epsilon.$$

- (c) Show that, given $\epsilon > 0$, there exists a measurable set $A \subset E$ such that f is bounded on A and $\int_{E \setminus A} |f| < \epsilon$.
- 28. Suppose that $f:[0,1]^2 \to \mathbb{R}$ satisfies the following conditions:
 - i. For each fixed $x \in [0, 1]$, f(x, y) is an integrable function of y;
 - ii. $\frac{\partial f}{\partial x}(x,y)$ exists at all points and is bounded on $[0,1]^2$.

Prove that $\frac{\partial f}{\partial x}(x,y)$ is a measurable function of y for each $x \in [0,1]$ and that

$$\frac{d}{dx}\int_0^1 f(x,y)\,dy = \int_0^1 \frac{\partial f}{\partial x}(x,y)\,dy.$$

29. Fix $1 \le p < \infty$ and suppose that:

- i. $f_m \to f$ in measure;
- ii. for each $\epsilon > 0$, there exists a $\delta > 0$ such that for every measurable set $E \subset \mathbb{R}^n$ satisfying $\lambda(E) < \delta$, we have $\int_E |f_m|^p < \epsilon$ for every m;
- iii. for each $\epsilon > 0$, there exists a measurable set $E \subset \mathbb{R}^n$ such that $\lambda(E) < \infty$ and $\int_{E^c} |f_m|^p < \epsilon$ for every m.

Prove that $f_m \to f$ in $L^p(\mathbb{R}^n)$.

- 30. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Let $f: X \to [0, +\infty]$ be measurable and suppose that $\int_X f \, d\mu = 0$. Prove that f = 0 a.e.
 - (b) Let $f \in L^1(X, \mu)$. Show that if $\int_A f d\mu = 0$ for every $A \in \mathcal{M}$, then f = 0 a.e.
- 31. Let $k \in L^1(\mathbb{R})$ be such that $\int_{\mathbb{R}} k(x) dx = 1$ and, for each $n \in \mathbb{N}$, set $k_n(x) = nk(nx)$. Prove that for every $f \in L^1(\mathbb{R})$,

$$\lim_{n \to \infty} \|f * k_n - f\|_{L^1} = 0$$

Recall that the convolution is defined by $f * k(x) = \int_{\mathbb{R}} f(x - y)k(y) \, dy$.

32. (On a property of Lebesgue integrable functions)

Let $f \in L^1(\mathbb{R})$.

(a) Fix $\alpha > 0$. For $n \in \mathbb{N}$, define f_n by $f_n(x) = f(nx)/n^{\alpha}$. Show that

$$||f_n||_1 = \int_{\mathbb{R}} \frac{|f(nx)|}{n^{\alpha}} \, dx = \int_{\mathbb{R}} \frac{|f(z)|}{n^{1+\alpha}} \, dz = \frac{||f||_1}{n^{1+\alpha}}$$

(b) Use (a) to show that $f_n(x) \to 0$ as $n \to \infty$ for m-a.e. $x \in \mathbb{R}$ (where m is Lebesgue measure on \mathbb{R}).

33. Let $F \subset \mathbb{R}$ be a closed subset of positive measure. For $x \in \mathbb{R}$, define the distance from x to F by

$$d(x,F) = \inf_{z \in F} d(x,z).$$

Prove that for Lebesgue almost every $y \in F$, we have

$$\lim_{x \to y} \frac{d(x, F)}{|x - y|} = 0.$$

Hint: Consider Lebesgue density points of F.

- 34. (On the closed graph thereom)
 - (a) State the closed graph theorem.

- (b) Let \mathfrak{X} and \mathfrak{Y} be (complex) Banach spaces. Prove that if $T : \mathfrak{X} \to \mathfrak{Y}$ is a linear map such that $\varphi \circ T \in \mathfrak{X}^*$ for every $\varphi \in \mathfrak{Y}^*$, then T is a bounded linear map. Here \mathfrak{X}^* and \mathfrak{Y}^* denote the dual spaces of \mathfrak{X} and \mathfrak{Y} , respectively.
- 35. (Convolution)
 - (a) Define the *convolution* f * g of two measurable functions $f : \mathbb{R} \to \mathbb{C}$ and $g : \mathbb{R} \to \mathbb{C}$.
 - (b) Suppose $f, g \in L^1(\mathbb{R})$. Prove that

$$||f * g||_1 \le ||f||_1 ||g||_1$$

You must prove this special case of the Young inequality yourself; do not simply quote the Young inequality.

- (c) Let $\mathcal{F}[\cdot]$ denote the Fourier transform. Suppose that $f, g \in L^1(\mathbb{R})$. Prove that $\mathcal{F}[f * g](\gamma) = \mathcal{F}[f](\gamma)\mathcal{F}[g](\gamma)$ for all $\gamma \in \mathbb{R}$.
- (d) Prove that there does not exist $u \in L^1(\mathbb{R})$ such that f = f * u a.e. for every $f \in L^1(\mathbb{R})$. Hint: proceed by contradiction. Assume u exists and let $f \in L^1(\mathbb{R})$ be a function such that $\mathcal{F}[f](\gamma) \neq 0$ for all $\gamma \in \mathbb{R}$ (you do not need to give an explicit example of such an f). Now use

$$\|\mathcal{F}[f - f * u]\|_{L^{\infty}(\mathbb{R})} \le \|f - f * u\|_{L^{1}(\mathbb{R})} = 0$$

to deduce a contradiction.

- 36. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Suppose $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$ are real-valued measurable functions such that $\int_X f \, d\mu = \int_X g \, d\mu$. Prove that either $f = g \, \mu$ -almost everywhere or there exists a set $E \in \mathcal{M}$ with $\mu(E) > 0$ and $\int_E f \, d\mu > \int_E g \, d\mu$.
- 37. (a) If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces, define the σ -algebra $\mathcal{A} \times \mathcal{B}$. Also explain briefly how the product measure $\mu \times \nu$ is defined.
 - (b) What are the relationships between $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$, $\mathcal{B}(\mathbb{R}^2)$, $\mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R})$, and $\mathcal{L}(\mathbb{R}^2)$? Prove most of your assertions.
 - (c) State and prove Tonelli's theorem for $\mu \times \nu$.
 - (d) State and prove Fubini's theorem for $\mu \times \nu$.
- 38. If $f: X \to [0, \infty]$, define $E = \{(x, y) \in X \times \mathbb{R} : 0 \le y \le f(x)\}$. This is 'the region under the graph of f'.
 - (a) Prove that if f is measurable, then E is in $\mathcal{A} \times \mathcal{L}(\mathbb{R})$.
 - (b) Prove that under the hypothesis of (a), $(\mu \times \lambda)(E) = \int_X f \, d\mu$. Note that some books <u>define</u> the integral by this formula.
- 39. (a) What is a σ -algebra? What is a measure? What is a measure space?
 - (b) Prove that if (X, \mathcal{A}, μ) is a measure space, then μ satisfies the conditions defining an outer measure (except for being defined on all sets).
 - (c) What is the Borel σ -algebra on a topological space? What is a Borel set?
 - (d) Show that the set $[0,1) \cup \mathbb{Q}$ is a Borel set.
- 40. (a) What is Lebesgue outer measure λ^* , and Lebesgue measure λ on \mathbb{R}^n ? Outline the construction (you don't need to prove anything).
 - (b) Show that if A is a Lebesgue measurable set, then $\lambda(A) = \inf\{\lambda(U) : \text{all open sets } U \text{ containing } A\}$, and that this also equals $\sup\{\lambda(K) : \text{ compact } K \subset A\}$.
 - (c) Prove that Lebesgue measure on \mathbb{R}^n is σ -finite.
- 41. Fix 1 and let q satisfy <math>1/p + 1/q = 1. Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^p([0,1])$ for which there exists K > 0 such that $||f_n||_p \le K$ for every $n \in \mathbb{N}$. Suppose that there exists a Lebesgue measurable function f on [0,1] such that $f_n(x) \to f(x)$ for m-a.e. $x \in [0,1]$.

- (a) Prove that $f \in L^p([0,1])$ and $||f||_p \leq K$.
- (b) Prove that for every $g \in L^q([0,1])$, we have

$$\lim_{n \to \infty} \int_0^1 f_n(x)g(x) \, dx = \int_0^1 f(x)g(x) \, dx$$

- (c) Is the statement in part (b) true if p = 1 and $q = \infty$? If yes, prove it. If no, give a counterexample.
- 42. (On modes of convergence.) Let (X, \mathcal{M}, μ) be a measure space. Let $(f_n)_{n=1}^{\infty}$ be a sequence of μ -integrable functions and suppose f is μ -integrable as well.
 - (a) Prove that if $f_n \to f$ in the $L^1(\mu)$ sense, then $f_n \to f$ in measure.
 - (b) If $\mu(X) < \infty$ and if $f_n \to f$ in measure, does it follow that $f_n \to f$ in the $L^1(\mu)$ sense? Either prove this or give a counterexample.
- 43. (Analysis of a singularity)
 - (a) Prove that if $f \in L^p([0,1])$ and if 2 , then the integral

$$\int_0^1 \frac{|f(x)|}{\sqrt{x}} \, dm(x) \tag{1}$$

is finite.

- (b) Prove or provide a counterexample: If $f \in L^2([0,1])$, then integral (1) is finite.
- 44. (An absolute continuity result for the integral)

Let $f \in L^1(\mathbb{R})$.

(a) Prove that

$$\lim_{n \to \infty} \int_{\mathbb{R}} |f| \cdot \mathbf{1}_{\{x \in \mathbb{R} : |f(x)| > n\}} \, dm = 0.$$

Here 1 denotes the indicator function.

(b) Prove that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every measurable set $E \subset \mathbb{R}$ satisfying $m(E) < \delta$, we have

$$\int_E |f(x)| \, dm(x) < \varepsilon.$$

- 45. Suppose $f : [0,1] \to \mathbb{R}$ and f(0) = 0. For each of the following three statements about f, indicate whether the statement is TRUE or FALSE. If TRUE, give a proof of the statement. If FALSE, provide a counterexample. (For any counterexample, you can simply describe the function and state its properties; you don't need to prove that it has those properties or go into great detail.)
 - (a) If there exists $g \in L^1([0,1])$ such that $f(x) = \int_0^x g(t) d\lambda(t)$ for all $x \in [0,1]$, then f is differentiable at almost every $x \in [a, b]$.
 - (b) If f is differentiable at almost every $x \in [a, b]$, and f'(x) = 0 whenever f is differentiable at $x \in [0, 1]$, then f(1) = 0.
 - (c) If f is absolutely continuous, and f'(x) = 0 whenever f is differentiable at $x \in [0, 1]$, then f(1) = 0.
- 46. Let \mathcal{L} denote the Lebesgue measurable subsets of \mathbb{R} , and let λ denote Lebesgue measure on $(\mathbb{R}, \mathcal{L})$. Define signed measures μ and ν on $(\mathbb{R}, \mathcal{L})$ by

$$\mu(E) := \int_E |x| \, d\lambda(x) \quad \text{and} \quad \nu(E) := \int_{E \cap [-1,\infty)} x \, d\lambda(x)$$

- (a) Prove that $\nu \ll \mu$ and find $\frac{d\nu}{d\mu}$.
- (b) Either prove or disprove that $\mu \ll |\nu|$. (The symbol $|\nu|$ denotes the total variation measure of ν .)

- 47. (a) Define the words 'Banach space', 'Hilbert space'.
 - (b) Prove in full detail that $L^1([a, b])$ is a Banach space.
 - (c) State Hölder's inequality.
 - (d) Show that the continuous functions on [a, b] are dense in $L^1([a, b])$.
- 48. Let (X, μ) be a measure space.
 - (a) If $\nu(E) = \int_E g \, d\mu$ for all measurable sets E, write down a formula for $\int_X f \, d\nu$. What f, g, ν does your formula hold for?
 - (b) State the Radon-Nikodym/Lebesgue decomposition theorem in the case where all measures are finite, and prove the 'uniqueness' part.
 - (c) Using (a)-(b) and the fact that $\nu \ll |\nu|$, or otherwise, prove that $|\int_X f d\nu| \leq \int_X |f| d|\nu|$ if f is a bounded measurable function and $\nu \in M(X)$.
 - (d) Show that if μ is σ -finite, then $L^1(X, \mu)$ is isometrically isomorphic to the subspace $M_{\mu-a.c.} = \{\nu \in M(X) : \nu \ll \mu\}$ of the Banach space M(X).
- 49. (a) What is a simple (measurable) function?
 - (b) Prove that a product of simple (measurable) functions is a simple (measurable) function.
 - (c) Show that if f is a real-valued function on [a, b] that is continuous a.e., then f is Borel measurable and Lebesgue measurable.
 - (d) Prove giving all details why if $f, g: X \to [-\infty, \infty]$ are integrable and $f \leq g$ a.e., then $\int_X f \leq \int_X g$.
- 50. (a) If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces, define the σ -algebra $\mathcal{A} \times \mathcal{B}$. Also explain briefly how the product measure $\mu \times \nu$ is defined.
 - (b) Define the convolution f * g of two functions in $L^1(\mathbb{R})$. Show that the function inside the integral in the definition of f * g is measurable, and that f * g = g * f.
 - (c) Show that if $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then (f * g)(x) exists for all x, and f * g is bounded with $\|f * g\|_{\infty} \leq \|f\|_p \|g\|_q$.
 - (d) Prove the formula for the Fourier transform of f * g for $f, g \in L^1(\mathbb{R}^n)$.
- 51. (a) What is the connection between f being integrable and |f| being integrable?
 - (b) What are the relationships between $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$, $\mathcal{B}(\mathbb{R}^2)$, $\mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R})$, and $\mathcal{L}(\mathbb{R}^2)$? Prove these.
 - (c) State and prove Tonelli's theorem for $\mu \times \nu$.
 - (d) Let h and g be integrable functions on X and Y respectively, and let f(x, y) = h(x)g(y). Show that f is integrable and $\int f d(\mu \times \nu) = (\int_X h d\mu)(\int_Y g d\nu)$.
- 52. (On absolute continuity)

Let m denote Lebesgue measure on \mathbb{R} .

- (a) Let a < b be real numbers. Give the definition of an absolutely continuous function $f : [a, b] \to \mathbb{R}$.
- (b) Suppose $f : [a, b] \to \mathbb{R}$ is absolutely continuous. Prove that if A is a Lebesgue measurable subset of [a, b] with m(A) = 0, then m(f(A)) = 0.
- (c) If E is a Lebesgue measurable subset of \mathbb{R} with m(E) = 0, does it follow that

$$\{e^x : x \in E\}$$

has Lebesgue measure zero? Either prove this or give a counterexample.

53. (On the Fourier transform) Let $f : \mathbb{R} \to \mathbb{C}$ be Lebesgue integrable. Recall that the Fourier transform of f is defined by

$$\hat{f}(\gamma) = \int_{\mathbb{R}} f(t) e^{-2\pi i \gamma t} dt.$$

- (a) Prove that \hat{f} is uniformly continuous on \mathbb{R} .
- (b) Prove that

$$\lim_{\gamma \to \infty} \tilde{f}(\gamma) = 0.$$

Hint: First show this for the characteristic function of an interval of finite length. To complete the proof, make a density argument.

- 54. Let (X, \mathcal{M}, μ) be a measure space. Throughout this problem, all functions are real-valued on X and measurable. For each part, either prove the statement or provide a counterexample.
 - (a) If $f_n \to f$ in the $L^1(\mu)$ sense, then $f_n \to f$ in measure.
 - (b) If $f_n \to f$ in measure and if $\mu(X) < \infty$, then $f_n \to f$ in the $L^1(\mu)$ sense.
 - (c) If $f_n \to f$ almost uniformly, then $f_n(x) \to f(x)$ for μ -a.e. $x \in X$. (Recall that $f_n \to f$ almost uniformly if for every $\varepsilon > 0$, there exists $E \subset X$ such that $\mu(E) < \varepsilon$ and $f_n \to f$ uniformly on $X \setminus E$.
- 55. Let *m* denote Lebesgue measure on \mathbb{R} . Let $F : \mathbb{R} \to \mathbb{R}$ be a measurable function for which there exists C > 0 such that $|F(x)| \leq C|x|$ for every $x \in \mathbb{R}$. Suppose further that *F* is differentiable at 0 with F'(0) = a. Prove that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{nF(x)}{x(1+n^2x^2)} \, dm(x) = \pi a.$$

Hints: Consider the change of variable u = nx. You may use the fact that

$$\int_{-\infty}^{\infty} \frac{1}{1+u^2} \, dm(u) = \pi$$

56. (On weak convergence) Let m denote Lebesgue measure on [0, 1]. Let (f_n) be a sequence of functions in $L^2([0, 1])$ that converges weakly to $f \in L^2([0, 1])$, meaning that

$$\lim_{n \to \infty} \int_0^1 f_n g \, dm = \int_0^1 f g \, dm$$

for every $g \in L^2([0,1])$. Prove that there exists K > 0 such that $||f_n||_{L^2([0,1])} \leq K < \infty$ for every $n \in \mathbb{N}$. Hint: Uniform boundedness principle.

- 57. (a) Prove that the dual of L^1 is L^{∞} , in the case of a finite positive measure.
 - (b) What does it mean for a measure to be concentrated on a set?
 - (c) State the Hahn and the Jordan decompositions.
 - (d) For a finite signed measure ν , show that $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{A}, F \subset E\}$ and $\nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{A}, F \subset E\}$.
- 58. (a) Define the terms: AC, NAC, Lebesgue-Stieljes measure.
 - (b) Complete the sentence: "An NBV function F is in NAC iff its Lebesgue-Stieljes measure..."
 - (c) State and prove the 'second fundamental theorem of calculus' involving AC([a, b]).
 - (d) Show that every $f \in AC([a, b])$ is of bounded variation.
- 59. (a) Show that every open set in \mathbb{R}^n is a countable disjoint union of 'half open intervals' (that is, Cartesian products of *n* real intervals of the form [a, b)).
 - (b) Show that Lebesgue measure is translation invariant.
 - (c) What does it mean to say Lebesgue measure is regular? Prove this in \mathbb{R} .
 - (d) Explain why Borel sets are Lebesgue measurable.

- (e) Prove that the sum of two real-valued measurable functions is measurable.
- (f) Show that the plane x + y + z = 0 has three-dimensional Lebesgue measure equal to 0.
- 60. Let (X, \mathcal{A}, μ) be a measure space.
 - (a) State the monotone convergence theorem.
 - (b) Suppose that $\{f_n\}$ is a sequence of nonnegative measurable functions on X that converge pointwise to a function f, and that $f_n \leq f$ for each n. Prove that $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$. (Note that we are not assuming that f is integrable.)
 - (c) State and prove the Beppo Levi theorem.
 - (d) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear map, state and prove a formula for the Lebesgue measure of T(E) for a Lebesgue measurable set E.
 - (e) Suppose that E_n are disjoint sets in \mathcal{A} for $n \in \mathbb{N}$, and that f is a NONNEGATIVE measurable function on $X = \bigcup_n E_n$. Prove that f is measurable on each E_n , and show that $\int_X f = \sum_n \int_{E_n} f$. Deduce that the sum here converges if and only if f is integrable on X.
- 61. (a) State the Radon-Nikodym/Lebesgue decomposition theorem, in the case where all measures are finite, and prove part of it.
 - (b) What does it mean to say that a linear map $T: Z \to Y$ between normed spaces is open?
 - (c) State the open mapping theorem, the closed graph theorem, and a version of the Hahn-Banach theorem.
 - (d) Use the Hahn-Banach theorem to show that the canonical map from a normed space Z into Z^{**} is an isometry.
- 62. (a) What is a Hilbert space? What does it mean to say that two Hilbert spaces are unitarily isomorphic?
 - (b) Explain why $L^2([0,1])$ is unitarily isomorphic to ℓ^2 .
 - (c) Show that for every $f \in L^2([0, 2\pi])$, the Fourier series of f converges to f in L^2 -norm.
 - (d) State Plancherel's theorem.