
Math 6320/6321: Theory of Functions of a Real Variable Sample Preliminary Exam Questions

1. Let (X,M, µ) be a measure space.

(a) Prove that if µ(X) <∞ and if 1 ≤ p < q <∞, then Lq(µ) ⊆ Lp(µ).

(b) Is the statement in (a) true if µ(X) =∞? If yes, prove it. If no, give a counterexample.

2. Let µ and ν be finite measures on a measurable space (X,M) and suppose that

ν(E) =

∫
E

f dµ

for every E ∈M, where f is some function in L1(µ). Prove that∫
X

g dν =

∫
X

gf dµ

for all g ∈ L1(ν).

3. (a) What is a simple function? What is an integrable function? How is
∫
X
f dµ defined? Define it first

for a simple function, then for a nonnegative measurable function, and then finally for an integrable
function.

(b) Prove that
∫
E
f dµ = 0 if µ(E) = 0 and f is measurable.

(c) What is the connection between f being integrable and |f | being integrable? Prove it. Also, find a
function f : [a, b]→ R for which |f | is integrable, but f is not Borel measurable.

(d) State and prove the vanishing principle.

4. (a) What is an A-measurable function f : X → [−∞,+∞]? Mention some equivalent conditions.

(b) What is a Borel measurable function?

(c) Show how to construct a set which is Lebesgue measurable, but which is not a Borel set.

(d) Prove that if f : R→ R is increasing, then f is Borel measurable.

5. Let φ ∈ C∞0 (R) be such that φ is even, ‖φ‖L1 = 1, φ(x) ≥ 0, and φ(x) = 0 for |x| > 1. Define
φt(x) = t−1φ(x/t).

(a) Prove that if f ∈ C0(R), then f ∗ φt → f as t→ 0 pointwise on R and that f ∗ φt → f as t→ 0 in
the Lp norm for each 1 ≤ p <∞.

(b) Use part (a) to show that the same result extends to the case where f ∈ Lp(R). That is, if
f ∈ Lp(R), 1 ≤ p <∞, then f ∗ φt → f as t→ 0 in the Lp norm.

6. Suppose that a series
∑∞
n=1 fn converges absolutely in L1(R), i.e.,

∑∞
n=1 ‖fn‖L1 <∞. Prove that:

(a) the series f(x) =
∑∞
n=1 fn(x) converges for a.e. x ∈ R;

(b) f ∈ L1(R);

(c)
∫
R
∑∞
n=1 fn =

∑∞
n=1

∫
R fn.

7. Do the following three parts.

(a) Give precise statements (e.g., as stated in class or in Folland’s book) of Tonelli’s theorem and
Fubini’s theorem for general measure spaces.

(b) Let λ denote Lebesgue measure on R, and let λ2 := λ×λ denote the product measure on R2. Prove
that if f, g ∈ L1(R), then∫

R2

f(x)g(t− x) dλ2(x, t) =

∫
R2

g(x)f(t− x) dλ2(x, t).

Justify any steps in your proof, and if you use any theorems explain why the hypotheses of those
theorems are satisfied.
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(c) Let I2 := [0, 1]× [0, 1]. Prove that the function f : I2 → R defined by

f(x, y) :=

{
x2−y2

(x2+y2)2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is not integrable. (Hint: It may help to realize that ∂
∂x

(
−x

x2+y2

)
= f(x, y).)

8. Prove that

lim
n→∞

∫ ∞
0

xn cos(x/n)

(1 + xn)ex
dx

exists and compute it.

9. (On translation) For a real-valued function f on R, define the translate f t by f t(x) = f(x− t).
(a) Suppose f is continuous on R and has compact support. Prove that ‖f t − f‖L∞(R) → 0 as t→ 0.

(b) Show that if f ∈ L1(R), then ‖f t − f‖L1(R) → 0 as t→ 0.

10. (a) State Lebesgue’s dominated convergence theorem.

(b) Let µ be counting measure on N. We can identify a function f : N → R with a sequence (an)n∈N.
Prove that if f is integrable then

∑∞
k=1 |ak| converges in the sense of Calculus 2, and the sum equals∫

N |f | dµ. Show also that in this case
∫
X
f dµ =

∑∞
k=1 ak.

(c) Show that a Riemann integrable function f : [a, b] → R is Lebesgue integrable, and that the two
integrals of f coincide.

(d) Complete the sentence: a bounded function f : [a, b]→ R is Riemann integrable if and only if f . . . .

11. (a) State LDCT.

(b) What is a ‘Banach space’?

(c) For a measure space (X,µ), show that the simple functions are dense in L1(X,µ).

(d) Show that L∞([0, 1]) is not separable.

12. Prove the following statements or disprove by providing a counterexample:

(a) If a set E ⊂ Rn has nonempty interior, then λ∗(E) > 0. (Note: λ∗ is the outer measure.)

(b) If a set E ⊂ Rn is such that λ∗(E) > 0, then E has nonempty interior.

(c) Every continuous function f : R→ R is measurable.

(d) If f : R→ R is continuous at all but one point, then there exists a continuous function g such that
f = g a.e.

(e) If A ⊂ R is an uncountable Lebesgue-measurable set, the its Lebesgue measure is larger than 0.

(f) If {fk} is a sequence of non-negative and measurable functions on [0, 1] such that fk → 0 a.e., then∫
[0,1]

fk → 0.

(g) If {fk} is a sequence of non-negative and measurable functions on [0, 1] such that fk ≤M for all k
and fk → 0 a.e., then

∫
[0,1]

fk → 0.

(h) If {fk} is a sequence of non-negative and measurable functions on [0, 1] such that fk → 0 in measure,
then fk → 0 a.e.

13. Let 1 ≤ p <∞ and suppose that fn, f ∈ Lp(Rn) satisfy fn → f a.e. Prove that

‖fn − f‖Lp → 0 ⇐⇒ ‖fn‖Lp → ‖f‖Lp .

14. LetM be the collection of all subsets E of R such that either E or its complement is at most countable.
Prove that M is a σ-algebra.
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15. Let f ∈ L1((0, 1)). Define g on (0, 1) by

g(x) =

∫ 1

x

f(t)

t
dt.

Prove that g ∈ L1((0, 1)).

16. (Absolute continuity)

(a) A function f : [0, 1]→ R is said to be Lipschitz if there exists L > 0 such that |f(x)−f(y)| ≤ L|x−y|
for all x, y ∈ [0, 1]. Prove that if f : [0, 1]→ R is Lipschitz, then f is absolutely continuous.

(b) Suppose f : [0, 1]→ R is continuous on [0, 1] and absolutely continuous on [ε, 1] for every ε ∈ (0, 1).
Show that f need not be absolutely continuous on [0, 1] by giving a counterexample. Hint: Consider
functions of the form xα cos(1/xb).

17. Let λ denote Lebesgue measure on [0, 1]. Show that the function f : [0, 1]→ R defined by

f(x) =

∞∑
k=1

cos(2πkx) + xk

k2

is an integrable function and that ∫ 1

0

f(x) dλ(x) =
∞∑
k=1

1

(k + 1)k2
.

18. Suppose {fn}∞n=1 is a sequence in L1([0, 1]) with ‖fn‖1 ≤ K for each n ∈ N. Prove that if g : [0, 1]→ C
and fn → g almost everywhere, then g ∈ L1([0, 1]) and ‖g‖1 ≤ K.

19. (a) What is Lebesgue outer measure λ∗ on Rn? What does it mean for a subset A of Rn to be Lebesgue
measurable?

(b) Spell out all the relationships between the Lebesgue σ-algebra and the Borel σ-algebra. You don’t
need to prove anything.

(c) Explain the Caratheodory construction/theorem.

(d) What does it mean to say Lebesgue measure is a complete measure? Explain briefly how we know
that Lebesgue measure is complete.

(e) Show that there exists a Lebesgue measurable subset of R which is not a Borel set. (You don’t need
to prove anything about the ternary function, just use it.)

20. (a) Let h and g be integrable functions on X and Y respectively, and let f(x, y) = h(x)g(y). Show that
f is integrable and

∫
f d(µ × ν) = (

∫
X
h dµ)(

∫
Y
g dν). State and prove the corresponding theorem

if h, g are measurable and nonnegative.

(b) Discuss some of the various types of convergence fn → f , and how they are related. You don’t need
to prove anything, but you might give some examples.

(c) Define the convolution f ∗ g of two functions in L1(R). Show that the function inside the integral
in the definition of f ∗ g is measurable. Show also that f ∗ g = g ∗ f .

(d) Show that the Fourier transform of f ∗ g is a product of the Fourier transform of f and the Fourier
transform of g.

21. (a) What is a complex measure ν on (X,A)? (If you never met complex measures, you may switch
them with finite signed measures here and in questions below.)

(b) Define the variation |ν|. Also, complete the sentence: “The variation |ν| is the smallest positive
measure such that ....” Define ‖ν‖.
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(c) Prove that |ν+σ| ≤ |ν|+ |σ| and |cν| = |c||ν| for complex measures ν, σ on (X,A), and deduce that
the space M(X) of such complex measures is a normed space.

(d) Prove that L2(X,µ) is a Hilbert space.

22. (a) Consider a compact Hausdorff space K, and let C(K) be the continuous scalar functions on K.
Define the supremum norm on C(K), show that it is a norm, and that with this norm C(K) is a
normed space. If you are lost, do this in the case K = [0, 1].

(b) With notation in (a), explain carefully the relationship between the measures on K and linear
functionals on C(K). Consider two cases, the positive (or nonnegative) case and the general case.

(c) What can you say about a surjective linear continuous one-to-one function between Banach spaces?
Also state the principle of uniform boundedness.

(d) Define the terms “dense” and “separable.” Give a simple test for when a normed space is not
separable, and using this show that L∞([0, 1]) is not separable.

23. (a) Define Lp(X,µ) for 1 ≤ p ≤ ∞.

(b) Prove in full detail that L1(X,µ) is a normed space and a Banach space.

(c) Prove that L2(X,µ) is a Hilbert space giving all the details. You can assume that it is a Banach
space.

(d) If g ∈ L1(X,µ), with g ≥ 0, and ν(E) =
∫
E
g dµ, show that ν is a measure, and that

∫
X
f dν =∫

X
fg dµ if either f is measurable and f ≥ 0 or f ∈ L∞(X,µ).

(e) Complete: The ‘density’ of a finite measure on Rn equals derivative a.e. That

is, for a.e. ~x, if measurable sets En ‘shrink nicely to’ ~x, then limk→∞
ν(Ek)
λ(Ek)

= .

24. (a) Show that if f is a continuous scalar valued function on [a, b], and if f = 0 a.e., then f = 0
everywhere.

(b) What is the connection between the Riemann and the Lebesgue integral?

(c) Show that the Lebesgue integral is translation invariant.

(d) Show that for f, g : [a, b]→ R, if f = g a.e., and g is continuous, then it does not necessarily follow
that f is continuous a.e.

25. (a) What does it mean that measurable sets En ‘shrink nicely’ to x?

(b) Complete the sentence: “If f ∈ L1(Rk) and if x is a Lebesgue point of f and En shrink nicely to x,
then ....”

(c) State and prove the ‘first fundamental theorem of calculus’ involving NAC.

(d) Prove that a function on R is Lipschitz iff it is in AC and its derivative is in L∞.

26. (a) For 1 < p < ∞ set q = p′, and define a map Φ : Lq(X,µ) → (Lp(X,µ))∗, showing that it is a
well-defined linear isometry. State a theorem from class about when Φ is also surjective.

(b) Define the terms: AC (absolute continuity), NBV.

(c) Explain the fundamental correspondence between measures on R and NBV, and between L1(R)
and AC.

(d) Show that every f ∈ AC[a, b] is of bounded variation.

27. Let E ⊂ Rn be a measurable set and f an integrable function on E.

(a) Set Em = {|f | < m} and show that fχEm
→ f in L1-norm as m→∞.

(b) Given ε > 0, show that there exists a constant δ > 0 such that for every measurable set A ⊂ E, we
have

λ(A) < ε =⇒
∫
A

|f | < ε.
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(c) Show that, given ε > 0, there exists a measurable set A ⊂ E such that f is bounded on A and∫
E\A |f | < ε.

28. Suppose that f : [0, 1]2 → R satisfies the following conditions:

i. For each fixed x ∈ [0, 1], f(x, y) is an integrable function of y;

ii. ∂f
∂x (x, y) exists at all points and is bounded on [0, 1]2.

Prove that ∂f
∂x (x, y) is a measurable function of y for each x ∈ [0, 1] and that

d

dx

∫ 1

0

f(x, y) dy =

∫ 1

0

∂f

∂x
(x, y) dy.

29. Fix 1 ≤ p <∞ and suppose that:

i. fm → f in measure;

ii. for each ε > 0, there exists a δ > 0 such that for every measurable set E ⊂ Rn satisfying λ(E) < δ,
we have

∫
E
|fm|p < ε for every m;

iii. for each ε > 0, there exists a measurable set E ⊂ Rn such that λ(E) < ∞ and
∫
Ec |fm|p < ε for

every m.

Prove that fm → f in Lp(Rn).

30. Let (X,M, µ) be a measure space.

(a) Let f : X → [0,+∞] be measurable and suppose that
∫
X
f dµ = 0. Prove that f = 0 a.e.

(b) Let f ∈ L1(X,µ). Show that if
∫
A
f dµ = 0 for every A ∈M, then f = 0 a.e.

31. Let k ∈ L1(R) be such that
∫
R k(x) dx = 1 and, for each n ∈ N, set kn(x) = nk(nx). Prove that for

every f ∈ L1(R),
lim
n→∞

‖f ∗ kn − f‖L1 = 0.

Recall that the convolution is defined by f ∗ k(x) =
∫
R f(x− y)k(y) dy.

32. (On a property of Lebesgue integrable functions)

Let f ∈ L1(R).

(a) Fix α > 0. For n ∈ N, define fn by fn(x) = f(nx)/nα. Show that

‖fn‖1 =

∫
R

|f(nx)|
nα

dx =

∫
R

|f(z)|
n1+α

dz =
‖f‖1
n1+α

.

(b) Use (a) to show that fn(x)→ 0 as n→∞ for m-a.e. x ∈ R (where m is Lebesgue measure on R).

33. Let F ⊂ R be a closed subset of positive measure. For x ∈ R, define the distance from x to F by

d(x, F ) = inf
z∈F

d(x, z).

Prove that for Lebesgue almost every y ∈ F , we have

lim
x→y

d(x, F )

|x− y|
= 0.

Hint: Consider Lebesgue density points of F .

34. (On the closed graph thereom)

(a) State the closed graph theorem.
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(b) Let X and Y be (complex) Banach spaces. Prove that if T : X → Y is a linear map such that
ϕ ◦ T ∈ X∗ for every ϕ ∈ Y∗, then T is a bounded linear map. Here X∗ and Y∗ denote the dual
spaces of X and Y, respectively.

35. (Convolution)

(a) Define the convolution f ∗ g of two measurable functions f : R→ C and g : R→ C.

(b) Suppose f, g ∈ L1(R). Prove that
‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

You must prove this special case of the Young inequality yourself; do not simply quote the Young
inequality.

(c) Let F [·] denote the Fourier transform. Suppose that f, g ∈ L1(R). Prove that F [f ∗ g](γ) =
F [f ](γ)F [g](γ) for all γ ∈ R.

(d) Prove that there does not exist u ∈ L1(R) such that f = f ∗ u a.e. for every f ∈ L1(R). Hint:
proceed by contradiction. Assume u exists and let f ∈ L1(R) be a function such that F [f ](γ) 6= 0
for all γ ∈ R (you do not need to give an explicit example of such an f). Now use

‖F [f − f ∗ u]‖L∞(R) ≤ ‖f − f ∗ u‖L1(R) = 0

to deduce a contradiction.

36. Let (X,M, µ) be a measure space with µ(X) <∞. Suppose f : X → R and g : X → R are real-valued
measurable functions such that

∫
X
f dµ =

∫
X
g dµ. Prove that either f = g µ-almost everywhere or

there exists a set E ∈M with µ(E) > 0 and
∫
E
f dµ >

∫
E
g dµ.

37. (a) If (X,A, µ) and (Y,B, ν) are σ-finite measure spaces, define the σ-algebra A × B. Also explain
briefly how the product measure µ× ν is defined.

(b) What are the relationships between B(R)×B(R), B(R2), L(R)×L(R), and L(R2)? Prove most of
your assertions.

(c) State and prove Tonelli’s theorem for µ× ν.

(d) State and prove Fubini’s theorem for µ× ν.

38. If f : X → [0,∞], define E = {(x, y) ∈ X ×R : 0 ≤ y ≤ f(x)}. This is ‘the region under the graph of f ’.

(a) Prove that if f is measurable, then E is in A× L(R).

(b) Prove that under the hypothesis of (a), (µ × λ)(E) =
∫
X
f dµ. Note that some books define the

integral by this formula.

39. (a) What is a σ-algebra? What is a measure? What is a measure space?

(b) Prove that if (X,A, µ) is a measure space, then µ satisfies the conditions defining an outer measure
(except for being defined on all sets).

(c) What is the Borel σ-algebra on a topological space? What is a Borel set?

(d) Show that the set [0, 1) ∪Q is a Borel set.

40. (a) What is Lebesgue outer measure λ∗, and Lebesgue measure λ on Rn? Outline the construction
(you don’t need to prove anything).

(b) Show that if A is a Lebesgue measurable set, then λ(A) = inf{λ(U) : all open sets U containing A},
and that this also equals sup{λ(K) : compact K ⊂ A}.

(c) Prove that Lebesgue measure on Rn is σ-finite.

41. Fix 1 < p < ∞ and let q satisfy 1/p + 1/q = 1. Let (fn)∞n=1 be a sequence in Lp([0, 1]) for which there
exists K > 0 such that ‖fn‖p ≤ K for every n ∈ N. Suppose that there exists a Lebesgue measurable
function f on [0, 1] such that fn(x)→ f(x) for m-a.e. x ∈ [0, 1].
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(a) Prove that f ∈ Lp([0, 1]) and ‖f‖p ≤ K.

(b) Prove that for every g ∈ Lq([0, 1]), we have

lim
n→∞

∫ 1

0

fn(x)g(x) dx =

∫ 1

0

f(x)g(x) dx.

(c) Is the statement in part (b) true if p = 1 and q =∞? If yes, prove it. If no, give a counterexample.

42. (On modes of convergence.) Let (X,M, µ) be a measure space. Let (fn)∞n=1 be a sequence of µ-integrable
functions and suppose f is µ-integrable as well.

(a) Prove that if fn → f in the L1(µ) sense, then fn → f in measure.

(b) If µ(X) <∞ and if fn → f in measure, does it follow that fn → f in the L1(µ) sense? Either prove
this or give a counterexample.

43. (Analysis of a singularity)

(a) Prove that if f ∈ Lp([0, 1]) and if 2 < p <∞, then the integral∫ 1

0

|f(x)|√
x

dm(x) (1)

is finite.

(b) Prove or provide a counterexample: If f ∈ L2([0, 1]), then integral (1) is finite.

44. (An absolute continuity result for the integral)

Let f ∈ L1(R).

(a) Prove that

lim
n→∞

∫
R
|f | · 1{x∈R:|f(x)|>n} dm = 0.

Here 1 denotes the indicator function.

(b) Prove that for every ε > 0, there exists δ > 0 such that for every measurable set E ⊂ R satisfying
m(E) < δ, we have ∫

E

|f(x)| dm(x) < ε.

45. Suppose f : [0, 1] → R and f(0) = 0. For each of the following three statements about f , indicate
whether the statement is TRUE or FALSE. If TRUE, give a proof of the statement. If FALSE, provide a
counterexample. (For any counterexample, you can simply describe the function and state its properties;
you don’t need to prove that it has those properties or go into great detail.)

(a) If there exists g ∈ L1([0, 1]) such that f(x) =
∫ x
0
g(t) dλ(t) for all x ∈ [0, 1], then f is differentiable

at almost every x ∈ [a, b].

(b) If f is differentiable at almost every x ∈ [a, b], and f ′(x) = 0 whenever f is differentiable at x ∈ [0, 1],
then f(1) = 0.

(c) If f is absolutely continuous, and f ′(x) = 0 whenever f is differentiable at x ∈ [0, 1], then f(1) = 0.

46. Let L denote the Lebesgue measurable subsets of R, and let λ denote Lebesgue measure on (R,L).
Define signed measures µ and ν on (R,L) by

µ(E) :=

∫
E

|x| dλ(x) and ν(E) :=

∫
E∩[−1,∞)

x dλ(x).

(a) Prove that ν � µ and find dν
dµ .

(b) Either prove or disprove that µ� |ν|. (The symbol |ν| denotes the total variation measure of ν.)
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47. (a) Define the words ‘Banach space’, ‘Hilbert space’.

(b) Prove in full detail that L1([a, b]) is a Banach space.

(c) State Hölder’s inequality.

(d) Show that the continuous functions on [a, b] are dense in L1([a, b]).

48. Let (X,µ) be a measure space.

(a) If ν(E) =
∫
E
g dµ for all measurable sets E, write down a formula for

∫
X
f dν. What f, g, ν does

your formula hold for?

(b) State the Radon-Nikodym/Lebesgue decomposition theorem in the case where all measures are
finite, and prove the ‘uniqueness’ part.

(c) Using (a)-(b) and the fact that ν � |ν|, or otherwise, prove that |
∫
X
f dν| ≤

∫
X
|f | d|ν| if f is a

bounded measurable function and ν ∈M(X).

(d) Show that if µ is σ-finite, then L1(X,µ) is isometrically isomorphic to the subspace Mµ−a.c. = {ν ∈
M(X) : ν � µ} of the Banach space M(X).

49. (a) What is a simple (measurable) function?

(b) Prove that a product of simple (measurable) functions is a simple (measurable) function.

(c) Show that if f is a real-valued function on [a, b] that is continuous a.e., then f is Borel measurable
and Lebesgue measurable.

(d) Prove giving all details why if f, g : X → [−∞,∞] are integrable and f ≤ g a.e., then
∫
X
f ≤

∫
X
g.

50. (a) If (X,A, µ) and (Y,B, ν) are σ-finite measure spaces, define the σ-algebra A × B. Also explain
briefly how the product measure µ× ν is defined.

(b) Define the convolution f ∗ g of two functions in L1(R). Show that the function inside the integral
in the definition of f ∗ g is measurable, and that f ∗ g = g ∗ f .

(c) Show that if f ∈ Lp(Rn) and g ∈ Lq(Rn), then (f ∗ g)(x) exists for all x, and f ∗ g is bounded with
‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

(d) Prove the formula for the Fourier transform of f ∗ g for f, g ∈ L1(Rn).

51. (a) What is the connection between f being integrable and |f | being integrable?

(b) What are the relationships between B(R)× B(R), B(R2), L(R)× L(R), and L(R2)? Prove these.

(c) State and prove Tonelli’s theorem for µ× ν.

(d) Let h and g be integrable functions on X and Y respectively, and let f(x, y) = h(x)g(y). Show that
f is integrable and

∫
f d(µ× ν) = (

∫
X
h dµ)(

∫
Y
g dν).

52. (On absolute continuity)

Let m denote Lebesgue measure on R.

(a) Let a < b be real numbers. Give the definition of an absolutely continuous function f : [a, b]→ R.

(b) Suppose f : [a, b]→ R is absolutely continuous. Prove that if A is a Lebesgue measurable subset of
[a, b] with m(A) = 0, then m(f(A)) = 0.

(c) If E is a Lebesgue measurable subset of R with m(E) = 0, does it follow that

{ex : x ∈ E}

has Lebesgue measure zero? Either prove this or give a counterexample.

53. (On the Fourier transform) Let f : R→ C be Lebesgue integrable. Recall that the Fourier transform of
f is defined by

f̂(γ) =

∫
R
f(t)e−2πiγt dt.
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(a) Prove that f̂ is uniformly continuous on R.

(b) Prove that

lim
γ→∞

f̂(γ) = 0.

Hint: First show this for the characteristic function of an interval of finite length. To complete the
proof, make a density argument.

54. Let (X,M, µ) be a measure space. Throughout this problem, all functions are real-valued on X and
measurable. For each part, either prove the statement or provide a counterexample.

(a) If fn → f in the L1(µ) sense, then fn → f in measure.

(b) If fn → f in measure and if µ(X) <∞, then fn → f in the L1(µ) sense.

(c) If fn → f almost uniformly, then fn(x) → f(x) for µ-a.e. x ∈ X. (Recall that fn → f almost
uniformly if for every ε > 0, there exists E ⊂ X such that µ(E) < ε and fn → f uniformly on
X \ E.

55. Let m denote Lebesgue measure on R. Let F : R → R be a measurable function for which there exists
C > 0 such that |F (x)| ≤ C|x| for every x ∈ R. Suppose further that F is differentiable at 0 with
F ′(0) = a. Prove that

lim
n→∞

∫ ∞
−∞

nF (x)

x(1 + n2x2)
dm(x) = πa.

Hints: Consider the change of variable u = nx. You may use the fact that∫ ∞
−∞

1

1 + u2
dm(u) = π.

56. (On weak convergence) Let m denote Lebesgue measure on [0, 1]. Let (fn) be a sequence of functions in
L2([0, 1]) that converges weakly to f ∈ L2([0, 1]), meaning that

lim
n→∞

∫ 1

0

fng dm =

∫ 1

0

fg dm

for every g ∈ L2([0, 1]). Prove that there exists K > 0 such that ‖fn‖L2([0,1]) ≤ K <∞ for every n ∈ N.

Hint: Uniform boundedness principle.

57. (a) Prove that the dual of L1 is L∞, in the case of a finite positive measure.

(b) What does it mean for a measure to be concentrated on a set?

(c) State the Hahn and the Jordan decompositions.

(d) For a finite signed measure ν, show that ν+(E) = sup{ν(F ) : F ∈ A, F ⊂ E} and ν−(E) =
− inf{ν(F ) : F ∈ A, F ⊂ E}.

58. (a) Define the terms: AC, NAC, Lebesgue-Stieljes measure.

(b) Complete the sentence: “An NBV function F is in NAC iff its Lebesgue-Stieljes measure...”

(c) State and prove the ‘second fundamental theorem of calculus’ involving AC([a, b]).

(d) Show that every f ∈ AC([a, b]) is of bounded variation.

59. (a) Show that every open set in Rn is a countable disjoint union of ‘half open intervals’ (that is,
Cartesian products of n real intervals of the form [a, b)).

(b) Show that Lebesgue measure is translation invariant.

(c) What does it mean to say Lebesgue measure is regular? Prove this in R.

(d) Explain why Borel sets are Lebesgue measurable.
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(e) Prove that the sum of two real-valued measurable functions is measurable.

(f) Show that the plane x+ y + z = 0 has three-dimensional Lebesgue measure equal to 0.

60. Let (X,A, µ) be a measure space.

(a) State the monotone convergence theorem.

(b) Suppose that {fn} is a sequence of nonnegative measurable functions on X that converge pointwise
to a function f , and that fn ≤ f for each n. Prove that limn→∞

∫
X
fn dµ =

∫
X
f dµ. (Note that

we are not assuming that f is integrable.)

(c) State and prove the Beppo Levi theorem.

(d) If T : Rn → Rn is an invertible linear map, state and prove a formula for the Lebesgue measure of
T (E) for a Lebesgue measurable set E.

(e) Suppose that En are disjoint sets in A for n ∈ N, and that f is a NONNEGATIVE measurable
function on X = ∪nEn. Prove that f is measurable on each En, and show that

∫
X
f =

∑
n

∫
En
f .

Deduce that the sum here converges if and only if f is integrable on X.

61. (a) State the Radon-Nikodym/Lebesgue decomposition theorem, in the case where all measures are
finite, and prove part of it.

(b) What does it mean to say that a linear map T : Z → Y between normed spaces is open?

(c) State the open mapping theorem, the closed graph theorem, and a version of the Hahn-Banach
theorem.

(d) Use the Hahn-Banach theorem to show that the canonical map from a normed space Z into Z∗∗ is
an isometry.

62. (a) What is a Hilbert space? What does it mean to say that two Hilbert spaces are unitarily isomorphic?

(b) Explain why L2([0, 1]) is unitarily isomorphic to `2.

(c) Show that for every f ∈ L2([0, 2π]), the Fourier series of f converges to f in L2-norm.

(d) State Plancherel’s theorem.


