1. Let (X, \mathcal{M}, μ) be a measure space.
(a) Prove that if $\mu(X)<\infty$ and if $1 \leq p<q<\infty$, then $L^{q}(\mu) \subseteq L^{p}(\mu)$.
(b) Is the statement in (a) true if $\mu(X)=\infty$? If yes, prove it. If no, give a counterexample.
2. Let μ and ν be finite measures on a measurable space (X, \mathcal{M}) and suppose that

$$
\nu(E)=\int_{E} f d \mu
$$

for every $E \in \mathcal{M}$, where f is some function in $L^{1}(\mu)$. Prove that

$$
\int_{X} g d \nu=\int_{X} g f d \mu
$$

for all $g \in L^{1}(\nu)$.
3. (a) What is a simple function? What is an integrable function? How is $\int_{X} f d \mu$ defined? Define it first for a simple function, then for a nonnegative measurable function, and then finally for an integrable function.
(b) Prove that $\int_{E} f d \mu=0$ if $\mu(E)=0$ and f is measurable.
(c) What is the connection between f being integrable and $|f|$ being integrable? Prove it. Also, find a function $f:[a, b] \rightarrow \mathbb{R}$ for which $|f|$ is integrable, but f is not Borel measurable.
(d) State and prove the vanishing principle.
4. (a) What is an \mathcal{A}-measurable function $f: X \rightarrow[-\infty,+\infty]$? Mention some equivalent conditions.
(b) What is a Borel measurable function?
(c) Show how to construct a set which is Lebesgue measurable, but which is not a Borel set.
(d) Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is increasing, then f is Borel measurable.
5. Let $\phi \in C_{0}^{\infty}(\mathbb{R})$ be such that ϕ is even, $\|\phi\|_{L^{1}}=1, \phi(x) \geq 0$, and $\phi(x)=0$ for $|x|>1$. Define $\phi_{t}(x)=t^{-1} \phi(x / t)$.
(a) Prove that if $f \in C_{0}(\mathbb{R})$, then $f * \phi_{t} \rightarrow f$ as $t \rightarrow 0$ pointwise on \mathbb{R} and that $f * \phi_{t} \rightarrow f$ as $t \rightarrow 0$ in the L^{p} norm for each $1 \leq p<\infty$.
(b) Use part (a) to show that the same result extends to the case where $f \in L^{p}(\mathbb{R})$. That is, if $f \in L^{p}(\mathbb{R}), 1 \leq p<\infty$, then $f * \phi_{t} \rightarrow f$ as $t \rightarrow 0$ in the L^{p} norm.
6. Suppose that a series $\sum_{n=1}^{\infty} f_{n}$ converges absolutely in $L^{1}(\mathbb{R})$, i.e., $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{L^{1}}<\infty$. Prove that:
(a) the series $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$ converges for a.e. $x \in \mathbb{R}$;
(b) $f \in L^{1}(\mathbb{R})$;
(c) $\int_{\mathbb{R}} \sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \int_{\mathbb{R}} f_{n}$.
7. Do the following three parts.
(a) Give precise statements (e.g., as stated in class or in Folland's book) of Tonelli's theorem and Fubini's theorem for general measure spaces.
(b) Let λ denote Lebesgue measure on \mathbb{R}, and let $\lambda^{2}:=\lambda \times \lambda$ denote the product measure on \mathbb{R}^{2}. Prove that if $f, g \in L^{1}(\mathbb{R})$, then

$$
\int_{\mathbb{R}^{2}} f(x) g(t-x) d \lambda^{2}(x, t)=\int_{\mathbb{R}^{2}} g(x) f(t-x) d \lambda^{2}(x, t)
$$

Justify any steps in your proof, and if you use any theorems explain why the hypotheses of those theorems are satisfied.
(c) Let $I^{2}:=[0,1] \times[0,1]$. Prove that the function $f: I^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y):=\left\{\begin{array}{cl}
\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

is not integrable. (Hint: It may help to realize that $\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}}\right)=f(x, y)$.)
8. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{x^{n} \cos (x / n)}{\left(1+x^{n}\right) e^{x}} d x
$$

exists and compute it.
9. (On translation) For a real-valued function f on \mathbb{R}, define the translate f^{t} by $f^{t}(x)=f(x-t)$.
(a) Suppose f is continuous on \mathbb{R} and has compact support. Prove that $\left\|f^{t}-f\right\|_{L^{\infty}(\mathbb{R})} \rightarrow 0$ as $t \rightarrow 0$.
(b) Show that if $f \in L^{1}(\mathbb{R})$, then $\left\|f^{t}-f\right\|_{L^{1}(\mathbb{R})} \rightarrow 0$ as $t \rightarrow 0$.
10. (a) State Lebesgue's dominated convergence theorem.
(b) Let μ be counting measure on \mathbb{N}. We can identify a function $f: \mathbb{N} \rightarrow \mathbb{R}$ with a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$. Prove that if f is integrable then $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges in the sense of Calculus 2, and the sum equals $\int_{\mathbb{N}}|f| d \mu$. Show also that in this case $\int_{X} f d \mu=\sum_{k=1}^{\infty} a_{k}$.
(c) Show that a Riemann integrable function $f:[a, b] \rightarrow \mathbb{R}$ is Lebesgue integrable, and that the two integrals of f coincide.
(d) Complete the sentence: a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if $f \ldots$
11. (a) State LDCT.
(b) What is a 'Banach space'?
(c) For a measure space (X, μ), show that the simple functions are dense in $L^{1}(X, \mu)$.
(d) Show that $L^{\infty}([0,1])$ is not separable.
12. Prove the following statements or disprove by providing a counterexample:
(a) If a set $E \subset \mathbb{R}^{n}$ has nonempty interior, then $\lambda^{*}(E)>0$. (Note: λ^{*} is the outer measure.)
(b) If a set $E \subset \mathbb{R}^{n}$ is such that $\lambda^{*}(E)>0$, then E has nonempty interior.
(c) Every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable.
(d) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at all but one point, then there exists a continuous function g such that $f=g$ a.e.
(e) If $A \subset \mathbb{R}$ is an uncountable Lebesgue-measurable set, the its Lebesgue measure is larger than 0 .
(f) If $\left\{f_{k}\right\}$ is a sequence of non-negative and measurable functions on $[0,1]$ such that $f_{k} \rightarrow 0$ a.e., then $\int_{[0,1]} f_{k} \rightarrow 0$.
(g) If $\left\{f_{k}\right\}$ is a sequence of non-negative and measurable functions on $[0,1]$ such that $f_{k} \leq M$ for all k and $f_{k} \rightarrow 0$ a.e., then $\int_{[0,1]} f_{k} \rightarrow 0$.
(h) If $\left\{f_{k}\right\}$ is a sequence of non-negative and measurable functions on $[0,1]$ such that $f_{k} \rightarrow 0$ in measure, then $f_{k} \rightarrow 0$ a.e.
13. Let $1 \leq p<\infty$ and suppose that $f_{n}, f \in L^{p}\left(\mathbb{R}^{n}\right)$ satisfy $f_{n} \rightarrow f$ a.e. Prove that

$$
\left\|f_{n}-f\right\|_{L^{p}} \rightarrow 0 \Longleftrightarrow\left\|f_{n}\right\|_{L^{p}} \rightarrow\|f\|_{L^{p}}
$$

14. Let \mathcal{M} be the collection of all subsets E of \mathbb{R} such that either E or its complement is at most countable. Prove that \mathcal{M} is a σ-algebra.
15. Let $f \in L^{1}((0,1))$. Define g on $(0,1)$ by

$$
g(x)=\int_{x}^{1} \frac{f(t)}{t} d t
$$

Prove that $g \in L^{1}((0,1))$.
16. (Absolute continuity)
(a) A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be Lipschitz if there exists $L>0$ such that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in[0,1]$. Prove that if $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz, then f is absolutely continuous.
(b) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is continuous on $[0,1]$ and absolutely continuous on $[\varepsilon, 1]$ for every $\varepsilon \in(0,1)$. Show that f need not be absolutely continuous on $[0,1]$ by giving a counterexample. Hint: Consider functions of the form $x^{\alpha} \cos \left(1 / x^{b}\right)$.
17. Let λ denote Lebesgue measure on $[0,1]$. Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\sum_{k=1}^{\infty} \frac{\cos (2 \pi k x)+x^{k}}{k^{2}}
$$

is an integrable function and that

$$
\int_{0}^{1} f(x) d \lambda(x)=\sum_{k=1}^{\infty} \frac{1}{(k+1) k^{2}}
$$

18. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence in $L^{1}([0,1])$ with $\left\|f_{n}\right\|_{1} \leq K$ for each $n \in \mathbb{N}$. Prove that if $g:[0,1] \rightarrow \mathbb{C}$ and $f_{n} \rightarrow g$ almost everywhere, then $g \in L^{1}([0,1])$ and $\|g\|_{1} \leq K$.
19. (a) What is Lebesgue outer measure λ^{*} on \mathbb{R}^{n} ? What does it mean for a subset A of \mathbb{R}^{n} to be Lebesgue measurable?
(b) Spell out all the relationships between the Lebesgue σ-algebra and the Borel σ-algebra. You don't need to prove anything.
(c) Explain the Caratheodory construction/theorem.
(d) What does it mean to say Lebesgue measure is a complete measure? Explain briefly how we know that Lebesgue measure is complete.
(e) Show that there exists a Lebesgue measurable subset of \mathbb{R} which is not a Borel set. (You don't need to prove anything about the ternary function, just use it.)
20. (a) Let h and g be integrable functions on X and Y respectively, and let $f(x, y)=h(x) g(y)$. Show that f is integrable and $\int f d(\mu \times \nu)=\left(\int_{X} h d \mu\right)\left(\int_{Y} g d \nu\right)$. State and prove the corresponding theorem if h, g are measurable and nonnegative.
(b) Discuss some of the various types of convergence $f_{n} \rightarrow f$, and how they are related. You don't need to prove anything, but you might give some examples.
(c) Define the convolution $f * g$ of two functions in $L^{1}(\mathbb{R})$. Show that the function inside the integral in the definition of $f * g$ is measurable. Show also that $f * g=g * f$.
(d) Show that the Fourier transform of $f * g$ is a product of the Fourier transform of f and the Fourier transform of g.
21. (a) What is a complex measure ν on (X, \mathcal{A}) ? (If you never met complex measures, you may switch them with finite signed measures here and in questions below.)
(b) Define the variation $|\nu|$. Also, complete the sentence: "The variation $|\nu|$ is the smallest positive measure such that" Define $\|\nu\|$.
(c) Prove that $|\nu+\sigma| \leq|\nu|+|\sigma|$ and $|c \nu|=|c||\nu|$ for complex measures ν, σ on (X, \mathcal{A}), and deduce that the space $M(X)$ of such complex measures is a normed space.
(d) Prove that $L^{2}(X, \mu)$ is a Hilbert space.
22. (a) Consider a compact Hausdorff space K, and let $C(K)$ be the continuous scalar functions on K. Define the supremum norm on $C(K)$, show that it is a norm, and that with this norm $C(K)$ is a normed space. If you are lost, do this in the case $K=[0,1]$.
(b) With notation in (a), explain carefully the relationship between the measures on K and linear functionals on $C(K)$. Consider two cases, the positive (or nonnegative) case and the general case.
(c) What can you say about a surjective linear continuous one-to-one function between Banach spaces? Also state the principle of uniform boundedness.
(d) Define the terms "dense" and "separable." Give a simple test for when a normed space is not separable, and using this show that $L^{\infty}([0,1])$ is not separable.
23. (a) Define $L^{p}(X, \mu)$ for $1 \leq p \leq \infty$.
(b) Prove in full detail that $L^{1}(X, \mu)$ is a normed space and a Banach space.
(c) Prove that $L^{2}(X, \mu)$ is a Hilbert space giving all the details. You can assume that it is a Banach space.
(d) If $g \in L^{1}(X, \mu)$, with $g \geq 0$, and $\nu(E)=\int_{E} g d \mu$, show that ν is a measure, and that $\int_{X} f d \nu=$ $\int_{X} f g d \mu$ if either f is measurable and $f \geq 0$ or $f \in L^{\infty}(X, \mu)$.
(e) Complete: The 'density' of a finite measure on \mathbb{R}^{n} equals \qquad derivative a.e. That is, for a.e. \vec{x}, if measurable sets E_{n} 'shrink nicely to' \vec{x}, then $\lim _{k \rightarrow \infty} \frac{\nu\left(E_{k}\right)}{\lambda\left(E_{k}\right)}=$ \qquad -.
24. (a) Show that if f is a continuous scalar valued function on $[a, b]$, and if $f=0$ a.e., then $f=0$ everywhere.
(b) What is the connection between the Riemann and the Lebesgue integral?
(c) Show that the Lebesgue integral is translation invariant.
(d) Show that for $f, g:[a, b] \rightarrow \mathbb{R}$, if $f=g$ a.e., and g is continuous, then it does not necessarily follow that f is continuous a.e.
25. (a) What does it mean that measurable sets E_{n} 'shrink nicely' to x ?
(b) Complete the sentence: "If $f \in L^{1}\left(\mathbb{R}^{k}\right)$ and if x is a Lebesgue point of f and E_{n} shrink nicely to x, then"
(c) State and prove the 'first fundamental theorem of calculus' involving NAC.
(d) Prove that a function on \mathbb{R} is Lipschitz iff it is in AC and its derivative is in L^{∞}.
26. (a) For $1<p<\infty$ set $q=p^{\prime}$, and define a map $\Phi: L^{q}(X, \mu) \rightarrow\left(L^{p}(X, \mu)\right)^{*}$, showing that it is a well-defined linear isometry. State a theorem from class about when Φ is also surjective.
(b) Define the terms: AC (absolute continuity), NBV.
(c) Explain the fundamental correspondence between measures on \mathbb{R} and NBV, and between $L^{1}(\mathbb{R})$ and AC.
(d) Show that every $f \in A C[a, b]$ is of bounded variation.
27. Let $E \subset \mathbb{R}^{n}$ be a measurable set and f an integrable function on E.
(a) Set $E_{m}=\{|f|<m\}$ and show that $f \chi_{E_{m}} \rightarrow f$ in L^{1}-norm as $m \rightarrow \infty$.
(b) Given $\epsilon>0$, show that there exists a constant $\delta>0$ such that for every measurable set $A \subset E$, we have

$$
\lambda(A)<\epsilon \Longrightarrow \int_{A}|f|<\epsilon
$$

(c) Show that, given $\epsilon>0$, there exists a measurable set $A \subset E$ such that f is bounded on A and $\int_{E \backslash A}|f|<\epsilon$.
28. Suppose that $f:[0,1]^{2} \rightarrow \mathbb{R}$ satisfies the following conditions:
i. For each fixed $x \in[0,1], f(x, y)$ is an integrable function of y;
ii. $\frac{\partial f}{\partial x}(x, y)$ exists at all points and is bounded on $[0,1]^{2}$.

Prove that $\frac{\partial f}{\partial x}(x, y)$ is a measurable function of y for each $x \in[0,1]$ and that

$$
\frac{d}{d x} \int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{\partial f}{\partial x}(x, y) d y
$$

29. Fix $1 \leq p<\infty$ and suppose that:
i. $f_{m} \rightarrow f$ in measure;
ii. for each $\epsilon>0$, there exists a $\delta>0$ such that for every measurable set $E \subset \mathbb{R}^{n}$ satisfying $\lambda(E)<\delta$, we have $\int_{E}\left|f_{m}\right|^{p}<\epsilon$ for every m;
iii. for each $\epsilon>0$, there exists a measurable set $E \subset \mathbb{R}^{n}$ such that $\lambda(E)<\infty$ and $\int_{E^{c}}\left|f_{m}\right|^{p}<\epsilon$ for every m.
Prove that $f_{m} \rightarrow f$ in $L^{p}\left(\mathbb{R}^{n}\right)$.
30. Let (X, \mathcal{M}, μ) be a measure space.
(a) Let $f: X \rightarrow[0,+\infty]$ be measurable and suppose that $\int_{X} f d \mu=0$. Prove that $f=0$ a.e.
(b) Let $f \in L^{1}(X, \mu)$. Show that if $\int_{A} f d \mu=0$ for every $A \in \mathcal{M}$, then $f=0$ a.e.
31. Let $k \in L^{1}(\mathbb{R})$ be such that $\int_{\mathbb{R}} k(x) d x=1$ and, for each $n \in \mathbb{N}$, set $k_{n}(x)=n k(n x)$. Prove that for every $f \in L^{1}(\mathbb{R})$,

$$
\lim _{n \rightarrow \infty}\left\|f * k_{n}-f\right\|_{L^{1}}=0
$$

Recall that the convolution is defined by $f * k(x)=\int_{\mathbb{R}} f(x-y) k(y) d y$.
32. (On a property of Lebesgue integrable functions)

Let $f \in L^{1}(\mathbb{R})$.
(a) Fix $\alpha>0$. For $n \in \mathbb{N}$, define f_{n} by $f_{n}(x)=f(n x) / n^{\alpha}$. Show that

$$
\left\|f_{n}\right\|_{1}=\int_{\mathbb{R}} \frac{|f(n x)|}{n^{\alpha}} d x=\int_{\mathbb{R}} \frac{|f(z)|}{n^{1+\alpha}} d z=\frac{\|f\|_{1}}{n^{1+\alpha}} .
$$

(b) Use (a) to show that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for m-a.e. $x \in \mathbb{R}$ (where m is Lebesgue measure on \mathbb{R}).
33. Let $F \subset \mathbb{R}$ be a closed subset of positive measure. For $x \in \mathbb{R}$, define the distance from x to F by

$$
d(x, F)=\inf _{z \in F} d(x, z)
$$

Prove that for Lebesgue almost every $y \in F$, we have

$$
\lim _{x \rightarrow y} \frac{d(x, F)}{|x-y|}=0
$$

Hint: Consider Lebesgue density points of F.
34. (On the closed graph thereom)
(a) State the closed graph theorem.
(b) Let \mathfrak{X} and \mathfrak{Y} be (complex) Banach spaces. Prove that if $T: \mathfrak{X} \rightarrow \mathfrak{Y}$ is a linear map such that $\varphi \circ T \in \mathfrak{X}^{*}$ for every $\varphi \in \mathfrak{Y}^{*}$, then T is a bounded linear map. Here \mathfrak{X}^{*} and \mathfrak{Y}^{*} denote the dual spaces of \mathfrak{X} and \mathfrak{Y}, respectively.
35. (Convolution)
(a) Define the convolution $f * g$ of two measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ and $g: \mathbb{R} \rightarrow \mathbb{C}$.
(b) Suppose $f, g \in L^{1}(\mathbb{R})$. Prove that

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}
$$

You must prove this special case of the Young inequality yourself; do not simply quote the Young inequality.
(c) Let $\mathcal{F}[\cdot]$ denote the Fourier transform. Suppose that $f, g \in L^{1}(\mathbb{R})$. Prove that $\mathcal{F}[f * g](\gamma)=$ $\mathcal{F}[f](\gamma) \mathcal{F}[g](\gamma)$ for all $\gamma \in \mathbb{R}$.
(d) Prove that there does not exist $u \in L^{1}(\mathbb{R})$ such that $f=f * u$ a.e. for every $f \in L^{1}(\mathbb{R})$. Hint: proceed by contradiction. Assume u exists and let $f \in L^{1}(\mathbb{R})$ be a function such that $\mathcal{F}[f](\gamma) \neq 0$ for all $\gamma \in \mathbb{R}$ (you do not need to give an explicit example of such an f). Now use

$$
\|\mathcal{F}[f-f * u]\|_{L^{\infty}(\mathbb{R})} \leq\|f-f * u\|_{L^{1}(\mathbb{R})}=0
$$

to deduce a contradiction.
36. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$. Suppose $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are real-valued measurable functions such that $\int_{X} f d \mu=\int_{X} g d \mu$. Prove that either $f=g \mu$-almost everywhere or there exists a set $E \in \mathcal{M}$ with $\mu(E)>0$ and $\int_{E} f d \mu>\int_{E} g d \mu$.
37. (a) If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ-finite measure spaces, define the σ-algebra $\mathcal{A} \times \mathcal{B}$. Also explain briefly how the product measure $\mu \times \nu$ is defined.
(b) What are the relationships between $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}), \mathcal{B}\left(\mathbb{R}^{2}\right), \mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R})$, and $\mathcal{L}\left(\mathbb{R}^{2}\right)$? Prove most of your assertions.
(c) State and prove Tonelli's theorem for $\mu \times \nu$.
(d) State and prove Fubini's theorem for $\mu \times \nu$.
38. If $f: X \rightarrow[0, \infty]$, define $E=\{(x, y) \in X \times \mathbb{R}: 0 \leq y \leq f(x)\}$. This is 'the region under the graph of f '.
(a) Prove that if f is measurable, then E is in $\mathcal{A} \times \mathcal{L}(\mathbb{R})$.
(b) Prove that under the hypothesis of $(\mathrm{a}),(\mu \times \lambda)(E)=\int_{X} f d \mu$. Note that some books define the integral by this formula.
39. (a) What is a σ-algebra? What is a measure? What is a measure space?
(b) Prove that if (X, \mathcal{A}, μ) is a measure space, then μ satisfies the conditions defining an outer measure (except for being defined on all sets).
(c) What is the Borel σ-algebra on a topological space? What is a Borel set?
(d) Show that the set $[0,1) \cup \mathbb{Q}$ is a Borel set.
40. (a) What is Lebesgue outer measure λ^{*}, and Lebesgue measure λ on \mathbb{R}^{n} ? Outline the construction (you don't need to prove anything).
(b) Show that if A is a Lebesgue measurable set, then $\lambda(A)=\inf \{\lambda(U)$: all open sets U containing $A\}$, and that this also equals $\sup \{\lambda(K)$: compact $K \subset A\}$.
(c) Prove that Lebesgue measure on \mathbb{R}^{n} is σ-finite.
41. Fix $1<p<\infty$ and let q satisfy $1 / p+1 / q=1$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $L^{p}([0,1])$ for which there exists $K>0$ such that $\left\|f_{n}\right\|_{p} \leq K$ for every $n \in \mathbb{N}$. Suppose that there exists a Lebesgue measurable function f on $[0,1]$ such that $f_{n}(x) \rightarrow f(x)$ for m-a.e. $x \in[0,1]$.
(a) Prove that $f \in L^{p}([0,1])$ and $\|f\|_{p} \leq K$.
(b) Prove that for every $g \in L^{q}([0,1])$, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=\int_{0}^{1} f(x) g(x) d x
$$

(c) Is the statement in part (b) true if $p=1$ and $q=\infty$? If yes, prove it. If no, give a counterexample.
42. (On modes of convergence.) Let (X, \mathcal{M}, μ) be a measure space. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of μ-integrable functions and suppose f is μ-integrable as well.
(a) Prove that if $f_{n} \rightarrow f$ in the $L^{1}(\mu)$ sense, then $f_{n} \rightarrow f$ in measure.
(b) If $\mu(X)<\infty$ and if $f_{n} \rightarrow f$ in measure, does it follow that $f_{n} \rightarrow f$ in the $L^{1}(\mu)$ sense? Either prove this or give a counterexample.
43. (Analysis of a singularity)
(a) Prove that if $f \in L^{p}([0,1])$ and if $2<p<\infty$, then the integral

$$
\begin{equation*}
\int_{0}^{1} \frac{|f(x)|}{\sqrt{x}} d m(x) \tag{1}
\end{equation*}
$$

is finite.
(b) Prove or provide a counterexample: If $f \in L^{2}([0,1])$, then integral (1) is finite.
44. (An absolute continuity result for the integral)

Let $f \in L^{1}(\mathbb{R})$.
(a) Prove that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}}|f| \cdot \mathbf{1}_{\{x \in \mathbb{R}:|f(x)|>n\}} d m=0
$$

Here 1 denotes the indicator function.
(b) Prove that for every $\varepsilon>0$, there exists $\delta>0$ such that for every measurable set $E \subset \mathbb{R}$ satisfying $m(E)<\delta$, we have

$$
\int_{E}|f(x)| d m(x)<\varepsilon
$$

45. Suppose $f:[0,1] \rightarrow \mathbb{R}$ and $f(0)=0$. For each of the following three statements about f, indicate whether the statement is TRUE or FALSE. If TRUE, give a proof of the statement. If FALSE, provide a counterexample. (For any counterexample, you can simply describe the function and state its properties; you don't need to prove that it has those properties or go into great detail.)
(a) If there exists $g \in L^{1}([0,1])$ such that $f(x)=\int_{0}^{x} g(t) d \lambda(t)$ for all $x \in[0,1]$, then f is differentiable at almost every $x \in[a, b]$.
(b) If f is differentiable at almost every $x \in[a, b]$, and $f^{\prime}(x)=0$ whenever f is differentiable at $x \in[0,1]$, then $f(1)=0$.
(c) If f is absolutely continuous, and $f^{\prime}(x)=0$ whenever f is differentiable at $x \in[0,1]$, then $f(1)=0$.
46. Let \mathcal{L} denote the Lebesgue measurable subsets of \mathbb{R}, and let λ denote Lebesgue measure on $(\mathbb{R}, \mathcal{L})$. Define signed measures μ and ν on $(\mathbb{R}, \mathcal{L})$ by

$$
\mu(E):=\int_{E}|x| d \lambda(x) \quad \text { and } \quad \nu(E):=\int_{E \cap[-1, \infty)} x d \lambda(x) .
$$

(a) Prove that $\nu \ll \mu$ and find $\frac{d \nu}{d \mu}$.
(b) Either prove or disprove that $\mu \ll|\nu|$. (The symbol $|\nu|$ denotes the total variation measure of ν.)
47. (a) Define the words 'Banach space', 'Hilbert space'.
(b) Prove in full detail that $L^{1}([a, b])$ is a Banach space.
(c) State Hölder's inequality.
(d) Show that the continuous functions on $[a, b]$ are dense in $L^{1}([a, b])$.
48. Let (X, μ) be a measure space.
(a) If $\nu(E)=\int_{E} g d \mu$ for all measurable sets E, write down a formula for $\int_{X} f d \nu$. What f, g, ν does your formula hold for?
(b) State the Radon-Nikodym/Lebesgue decomposition theorem in the case where all measures are finite, and prove the 'uniqueness' part.
(c) Using (a)-(b) and the fact that $\nu \ll|\nu|$, or otherwise, prove that $\left|\int_{X} f d \nu\right| \leq \int_{X}|f| d|\nu|$ if f is a bounded measurable function and $\nu \in M(X)$.
(d) Show that if μ is σ-finite, then $L^{1}(X, \mu)$ is isometrically isomorphic to the subspace $M_{\mu-a . c .}=\{\nu \in$ $M(X): \nu \ll \mu\}$ of the Banach space $M(X)$.
49. (a) What is a simple (measurable) function?
(b) Prove that a product of simple (measurable) functions is a simple (measurable) function.
(c) Show that if f is a real-valued function on $[a, b]$ that is continuous a.e., then f is Borel measurable and Lebesgue measurable.
(d) Prove giving all details why if $f, g: X \rightarrow[-\infty, \infty]$ are integrable and $f \leq g$ a.e., then $\int_{X} f \leq \int_{X} g$.
50. (a) If (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ-finite measure spaces, define the σ-algebra $\mathcal{A} \times \mathcal{B}$. Also explain briefly how the product measure $\mu \times \nu$ is defined.
(b) Define the convolution $f * g$ of two functions in $L^{1}(\mathbb{R})$. Show that the function inside the integral in the definition of $f * g$ is measurable, and that $f * g=g * f$.
(c) Show that if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, then $(f * g)(x)$ exists for all x, and $f * g$ is bounded with $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$.
(d) Prove the formula for the Fourier transform of $f * g$ for $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$.
51. (a) What is the connection between f being integrable and $|f|$ being integrable?
(b) What are the relationships between $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}), \mathcal{B}\left(\mathbb{R}^{2}\right), \mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R})$, and $\mathcal{L}\left(\mathbb{R}^{2}\right)$? Prove these.
(c) State and prove Tonelli's theorem for $\mu \times \nu$.
(d) Let h and g be integrable functions on X and Y respectively, and let $f(x, y)=h(x) g(y)$. Show that f is integrable and $\int f d(\mu \times \nu)=\left(\int_{X} h d \mu\right)\left(\int_{Y} g d \nu\right)$.
52. (On absolute continuity)

Let m denote Lebesgue measure on \mathbb{R}.
(a) Let $a<b$ be real numbers. Give the definition of an absolutely continuous function $f:[a, b] \rightarrow \mathbb{R}$.
(b) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous. Prove that if A is a Lebesgue measurable subset of $[a, b]$ with $m(A)=0$, then $m(f(A))=0$.
(c) If E is a Lebesgue measurable subset of \mathbb{R} with $m(E)=0$, does it follow that

$$
\left\{e^{x}: x \in E\right\}
$$

has Lebesgue measure zero? Either prove this or give a counterexample.
53. (On the Fourier transform) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lebesgue integrable. Recall that the Fourier transform of f is defined by

$$
\hat{f}(\gamma)=\int_{\mathbb{R}} f(t) e^{-2 \pi i \gamma t} d t
$$

(a) Prove that \hat{f} is uniformly continuous on \mathbb{R}.
(b) Prove that

$$
\lim _{\gamma \rightarrow \infty} \hat{f}(\gamma)=0
$$

Hint: First show this for the characteristic function of an interval of finite length. To complete the proof, make a density argument.
54. Let (X, \mathcal{M}, μ) be a measure space. Throughout this problem, all functions are real-valued on X and measurable. For each part, either prove the statement or provide a counterexample.
(a) If $f_{n} \rightarrow f$ in the $L^{1}(\mu)$ sense, then $f_{n} \rightarrow f$ in measure.
(b) If $f_{n} \rightarrow f$ in measure and if $\mu(X)<\infty$, then $f_{n} \rightarrow f$ in the $L^{1}(\mu)$ sense.
(c) If $f_{n} \rightarrow f$ almost uniformly, then $f_{n}(x) \rightarrow f(x)$ for μ-a.e. $x \in X$. (Recall that $f_{n} \rightarrow f$ almost uniformly if for every $\varepsilon>0$, there exists $E \subset X$ such that $\mu(E)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on $X \backslash E$.
55. Let m denote Lebesgue measure on \mathbb{R}. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function for which there exists $C>0$ such that $|F(x)| \leq C|x|$ for every $x \in \mathbb{R}$. Suppose further that F is differentiable at 0 with $F^{\prime}(0)=a$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \frac{n F(x)}{x\left(1+n^{2} x^{2}\right)} d m(x)=\pi a
$$

Hints: Consider the change of variable $u=n x$. You may use the fact that

$$
\int_{-\infty}^{\infty} \frac{1}{1+u^{2}} d m(u)=\pi
$$

56. (On weak convergence) Let m denote Lebesgue measure on $[0,1]$. Let $\left(f_{n}\right)$ be a sequence of functions in $L^{2}([0,1])$ that converges weakly to $f \in L^{2}([0,1])$, meaning that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} g d m=\int_{0}^{1} f g d m
$$

for every $g \in L^{2}([0,1])$. Prove that there exists $K>0$ such that $\left\|f_{n}\right\|_{L^{2}([0,1])} \leq K<\infty$ for every $n \in \mathbb{N}$. Hint: Uniform boundedness principle.
57. (a) Prove that the dual of L^{1} is L^{∞}, in the case of a finite positive measure.
(b) What does it mean for a measure to be concentrated on a set?
(c) State the Hahn and the Jordan decompositions.
(d) For a finite signed measure ν, show that $\nu^{+}(E)=\sup \{\nu(F): F \in \mathcal{A}, F \subset E\}$ and $\nu^{-}(E)=$ $-\inf \{\nu(F): F \in \mathcal{A}, F \subset E\}$.
58. (a) Define the terms: AC, NAC, Lebesgue-Stieljes measure.
(b) Complete the sentence: "An NBV function F is in NAC iff its Lebesgue-Stieljes measure..."
(c) State and prove the 'second fundamental theorem of calculus' involving $\mathrm{AC}([a, b])$.
(d) Show that every $f \in \mathrm{AC}([a, b])$ is of bounded variation.
59. (a) Show that every open set in \mathbb{R}^{n} is a countable disjoint union of 'half open intervals' (that is, Cartesian products of n real intervals of the form $[a, b))$.
(b) Show that Lebesgue measure is translation invariant.
(c) What does it mean to say Lebesgue measure is regular? Prove this in \mathbb{R}.
(d) Explain why Borel sets are Lebesgue measurable.
(e) Prove that the sum of two real-valued measurable functions is measurable.
(f) Show that the plane $x+y+z=0$ has three-dimensional Lebesgue measure equal to 0 .
60. Let (X, \mathcal{A}, μ) be a measure space.
(a) State the monotone convergence theorem.
(b) Suppose that $\left\{f_{n}\right\}$ is a sequence of nonnegative measurable functions on X that converge pointwise to a function f, and that $f_{n} \leq f$ for each n. Prove that $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$. (Note that we are not assuming that f is integrable.)
(c) State and prove the Beppo Levi theorem.
(d) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an invertible linear map, state and prove a formula for the Lebesgue measure of $T(E)$ for a Lebesgue measurable set E.
(e) Suppose that E_{n} are disjoint sets in \mathcal{A} for $n \in \mathbb{N}$, and that f is a NONNEGATIVE measurable function on $X=\cup_{n} E_{n}$. Prove that f is measurable on each E_{n}, and show that $\int_{X} f=\sum_{n} \int_{E_{n}} f$. Deduce that the sum here converges if and only if f is integrable on X.
61. (a) State the Radon-Nikodym/Lebesgue decomposition theorem, in the case where all measures are finite, and prove part of it.
(b) What does it mean to say that a linear map $T: Z \rightarrow Y$ between normed spaces is open?
(c) State the open mapping theorem, the closed graph theorem, and a version of the Hahn-Banach theorem.
(d) Use the Hahn-Banach theorem to show that the canonical map from a normed space Z into $Z^{* *}$ is an isometry.
62. (a) What is a Hilbert space? What does it mean to say that two Hilbert spaces are unitarily isomorphic?
(b) Explain why $L^{2}([0,1])$ is unitarily isomorphic to ℓ^{2}.
(c) Show that for every $f \in L^{2}([0,2 \pi])$, the Fourier series of f converges to f in L^{2}-norm.
(d) State Plancherel's theorem.

